

Calculation Reference for Selecting Soft Absorbers 1

	Quick Refer	ence for Moment of Inertia	
			Unit: kg-m2
Shape	Slim rod	Thin disc	Thin square
Rotating shaft		It is parallel to the plain and passes through the centre of gravity	
Moment of inertia	$M \cdot \frac{\ell^2}{12}$	$M \cdot \frac{r^2}{4}$	$M \cdot \frac{a^2}{12}$
Shape	Slim rod	Thin disc	Thin rectangle
Rotating shaft	It is perpendicular to the rod at one of the ends	It is perpendicular to the plain and passes through the centre of gravity	It is an axis that is parallel to the plain and passes through the centre of gravity
Moment of inertia	$M \cdot \frac{\ell^2}{3}$	$M \cdot \frac{r^2}{2}$	$M \cdot \frac{b^2 a^2}{6(b^2 + a^2)}$
Shape	Thin rectangle G	Cylinder G (r)	Thin donut shape
Rotating shaft	It is parallel to side b and passes through the centre of gravity	It is a central axis that passes through the centre of gravity	It is an axis that is parallel to the plain and passes through the central axis
Moment of inertia	$M \cdot \frac{a^2}{12}$	$M \cdot \frac{r^2}{2}$	$M \cdot \frac{(a_1^2 + a_2^2)}{16}$
Shape	Thin rectangle	Hollow cylinder	Square frame (i)
Rotating shaft	It is parallel to side b and is on one side	It is a central axis that passes through the mutual center	It is an axis that is parallel to the plain and passes through the central axis
Moment of inertia	$M \cdot \frac{a^2}{3}$	$\mathbf{M} \cdot \frac{\mathbf{r_1}^2 + \mathbf{r_2}^2}{2}$	$M \cdot \frac{(a_1^2 + a_2^2)}{12}$
Shape	Rectangle	Sphere (filled)	Square frame (ii)
Rotating shaft	It is perpendicular to the plain and passes through the centre of gravity	It is an axis that passes through the centre of gravity	It is parallel to the plain and passes through the opposing corner
Moment of inertia	$M \cdot \frac{a^2 + b^2}{12}$	$M \cdot \frac{2r^2}{5}$	$M \cdot \frac{(a_1^2 + a_2^2)}{12}$

N

Soft Silent Safety Calculation Ref

Calculation Reference for Selecting Soft Absorbers 2

Quick Reference for Thrust due to Air Cylinder and Thrusting Energy

DInternal diameter of the cylinder (mm)	Pushing side	Pressure _	Thrusting energy E2 (J) = F-St Soft absorber's absorption stroke St						
	Thrusting energy due to cylinder								
	F (N)	(MPa)	8 (mm)	10 (mm)	12 (mm)	15 (mm)	16 (mm)	25 (mm)	25.4 (mm
φ 12	33.9	0.3	0.271	0.339	0.407	0.509	0.542	0.848	0.861
	56.5	0.5	0.452	0.565	0.678	0.848	0.904	1.41	1.44
	79.2	0.7	0.634	0.792	0.950	1.19	1.27	1.98	2.01
φ16	60.3	0.3	0.482	0.603	0.724	0.905	0.965	1.51	1.53
	101	0.5	0.808	1.01	1.21	1.52	1.62	2.53	2.57
	141	0.7	1.13	1.41	1.69	2.12	2.26	3.53	3.58
φ 20	94.2	0.3	0.754	0.942	1.13	1.41	1.51	2.36	2.39
	157	0.5	1.26	1.57	1.88	2.36	2.51	3.93	3.99
	220	0.7	1.76	2.20	2.64	3.30	3.52	5.50	5.59
φ 25	147	0.3	1.18	1.47	1.76	2.21	2.35	3.68	3.73
	245	0.5	1.96	2.45	2.94	3.68	3.92	6.13	6.22
	344	0.7	2.75	3.44	4.13	5.16	5.50	8.60	8.74
φ 32	241	0.3	1.93	2.41	2.88	3.60	3.84	6.00	6.10
	402	0.5	3.21	4.01	4.81	6.02	6.42	10.0	10.2
	563	0.7	4.49	5.61	6.73	8.42	8.98	14.0	14.2
φ 40	377	0.3	3.02	3.78	4.54	5.67	6.05	9.45	9.60
	628	0.5	5.04	6.30	7.56	9.45	10.1	15.8	16.0
	880	0.7	7.06	8.82	10.6	13.2	14.1	22.1	22.4
φ 50	589	0.3	4.70	5.88	7.06	8.82	9.41	14.7	14.9
	982	0.5	7.84	9.80	11.8	14.7	15.7	24.7	24.9
	1374	0.7	11.0	13.7	16.4	20.6	21.9	34.3	34.8
φ 63	935	0.3	7.51	9.39	11.3	14.1	15.0	23.5	23.9
	1560	0.5	12.6	15.7	18.8	23.6	25.1	39.3	39.9
	2180	0.7	17.5	21.9	26.3	32.9	35.0	54.8	55.6
φ 80	1510	0.3	12.1	15.1	18.1	22.7	24.2	37.8	38.4
	2510	0.5	20.1	25.1	30.1	37.7	40.2	62.8	63.8
	3520	0.7	28.1	35.1	42.1	52.7	56.2	88.0	89.2