

2．Thrusting Energy due to Motor－Driven Dolly
1．Thrusting Motion due to Air Cylinder Thrust

	Mass of the colliding object Impact rate Operation frequency Ambient temperature Thrust Number of soft absorber receivers
	1．Calculating kinetic energy $\begin{aligned} \mathrm{E} 1 & =1 / 2 \mathrm{MV}^{2}=1 / 2 \times 100 \times 0 . \\ & =24.5(\mathrm{~J}) \end{aligned}$

2．Calculating thrusting energy

E2 $=\mathrm{F} \times$ St

Here，the soft absorber＇s stroke must be determined tentatively． In essence，because the absorber must have an absorption capacity larger than the calculated kinetic energy，tentatively select an absorber that has a capacity that is at least $24.5(\mathrm{~J})$ higher than the catalogue specifications．Because the thrusting energy due to air cylinder must also be taken into consideration， tentatively select an absorber that has a capacity that is at least twice the kinetic energy．Here，FWM－2725FBD－＊with a maximum absorption capacity of 79.4 J is tentatively selected from the catalogue．Thrusting energy is determined as follows．

$$
\begin{aligned}
\mathrm{E} 2 & =\frac{3.14 \times 0.063^{2} \times 10^{6}}{4} \times 0.5 \times 0.025 \\
& =38.9(\mathrm{~J})
\end{aligned}
$$

3．Determine the total energy．

$$
\begin{aligned}
\mathrm{E} & =\mathrm{E} 1+\mathrm{E} 2=24.5+38.9 \mathrm{~J} \\
& =63.4(\mathrm{~J})
\end{aligned}
$$

4．Feasibility check

4－1．Using absorption energy to check
As the absorption energy of FWM－2725FBD－＊is
79．4（J），it does not pose a problem．
4－2．Using equivalent mass to check

$$
\begin{aligned}
\mathrm{Me} & =2 \mathrm{E} / \mathrm{V}^{2}=\frac{2 \times 63.4}{0.7^{2}} \\
& =259(\mathrm{~kg})
\end{aligned}
$$

As the equivalent mass of FWM－2725FBD－＊is $450(\mathrm{~kg})$ ，it does not pose a problem．
Based on these，FWM－2725FBD－＊is selected．

\square Mass of the colliding object	$\mathrm{M}: 1500 \mathrm{~kg}$
\square Impact rate	$\mathrm{V}: 0.5 \mathrm{~m} / \mathrm{s}$
\square Operation frequency	$\mathrm{C}: 1$ time／min
\square Ambient temperature	$\mathrm{T}: 0 \sim 25^{\circ} \mathrm{C}$
\square Thrust	$\mathrm{F}:$ Varies with the motor
	Motor output $\cdots 3.7 \mathrm{kw}$
\square Number of soft absorber receivers	$\mathrm{N}: 1$ unit

1．Calculating kinetic energy

$$
\mathrm{E} 1=1 / 2 \mathrm{MV}^{2}=1 / 2 \times 1500 \times 0.5^{2}
$$

$$
=187.5(\mathrm{~J})
$$

2．Calculating thrusting energy

Here，the trust is first calculated．For a motor－driven dolly， the smaller calculated value based on the following two equations is used as thrust．
（1） $\mathrm{F}=\frac{102 \times \mathrm{kw} \times 2.5 \times \mathrm{g}}{\mathrm{V}}=\frac{102 \times 3.7 \times 2.5 \times 9.8}{0.5}$

$$
=18492.6(\mathrm{~N})
$$

（2） $\mathrm{F}=\mathrm{M} \times \mathrm{g} \times \mu \times \mathrm{n} 1 / \mathrm{n} 2$（n1：Number of driving wheels，n2：Total number of wheels） $=1500 \times 9.8 \times 0.25 \times 1 / 2$

$$
=1837.5(\mathrm{~N})
$$

Therefore， 1837.5 N is used as thrust．At this point，a tentative absorber is selected．
FMA3350M is selected as the tentative soft absorber based on the kinetic energy．
Thrusting energy $\mathrm{E} 2=\mathrm{F} \times \mathrm{St}=1837.5 \times 0.05$

$$
=91.9(\mathrm{~J})
$$

3．Determine the total energy．

$$
\begin{aligned}
E & =E 1+E 2=187.5+91.9 \\
& =279.4(\mathrm{~J})
\end{aligned}
$$

4．Feasibility check

4－1．Using absorption energy to check
As the absorption energy of FMA3350M is $310(\mathrm{~J})$ ，it
does not pose a problem．
4－2．Using equivalent mass to check

$$
\begin{aligned}
\mathrm{Me} & =2 \mathrm{E} / \mathrm{V}^{2}=\frac{2 \times 279.4}{0.5^{2}} \\
& =2235(\mathrm{~kg})
\end{aligned}
$$

As the equivalent mass of FMA3350M is $2500(\mathrm{~kg})$ ，it does not pose a problem．Based on these，FMA3350M is selected．

SoftSilentSafety
 Sample Galaulations for Salatiny Soit Ahsothels?

3. Up-and-Down Motion due to Air Cylinder Thrust
Case Examples

\square Mass of the colliding object	M : 260kg
\square Air Cylinder rate	$\mathrm{v}: 0.5 \mathrm{~m} / \mathrm{s}$
\square Operation frequency	C : 1 time/min
\square Ambient temperature	T : $0 \sim 25^{\circ} \mathrm{C}$
\square Thrust	$F:$ Varies with the air cylinder Cylinder diameter...50mm Air pressure $\cdots 0.5 \mathrm{MPa}$
\square Number of soft absorber receivers	N : 1 unit

1. Calculating kinetic energy

$$
\begin{aligned}
E_{1} & =\frac{1}{2} I \omega^{2}=\frac{1}{2} \times M \times \frac{L^{2}}{3} \times\left(\frac{v}{r}\right)^{2} \\
& =\frac{1}{2} \times 260 \times \frac{0.7^{2}}{3} \times\left(\frac{0.5}{0.5}\right)^{2}=21.2(\mathrm{~J})
\end{aligned}
$$

(Impact rate $V=v \times\left(\frac{R}{r}\right)=0.5 \times \frac{0.6}{0.5}=0.6(\mathrm{~m} / \mathrm{s})$

2. Calculating thrusting energy

$$
\begin{aligned}
\mathrm{E}_{2} & =\mathrm{T} \Theta=\left(\frac{\pi \mathrm{D}^{2} P}{4} \times 10^{0} \times \mathrm{r}+\mathrm{Mg} \times \frac{\mathrm{L}}{2}\right) \times \frac{\mathrm{St}}{\mathrm{R}} \\
& =\left(\frac{3.14 \times 0.05^{2} \times 0.5}{4} \times 10^{6} \times 0.5+260 \times 9.8 \times \frac{0.7}{2}\right) \\
& \times \frac{\mathrm{St}}{0.6}
\end{aligned}
$$

As in previous examples, the soft absorber's stroke is tentatively determined. Here, FWM-3035TBD-* with a maximum absorption capacity of $196(\mathrm{~J})$ is tentatively selected from the catalogue. Thrusting energy is determined as follows.

$$
\begin{aligned}
E_{2}= & \left(\frac{3.14 \times 0.05^{2} \times 0.5}{4} \times 10^{6} \times 0.5+260 \times 9.8 \times \frac{0.7}{2}\right) \\
& \times \frac{0.035}{0.6}=80.6(\mathrm{~J})
\end{aligned}
$$

3. Determine the total energy.
$\mathrm{E}=\mathrm{E}_{1}+\mathrm{E}_{2}=21.2+80.6=101.8(\mathrm{~J})$

4. Feasibility check

4-1. Using absorption energy to check
As the absorption energy of FWM-3035TBD-* is 196(J),
it does not pose a problem.
4-2. Using equivalent mass to check

$$
\mathrm{Me}=\frac{2 \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 101.8}{0.6^{2}}=565.6(\mathrm{~kg})
$$

As the equivalent mass of FWM-3035TBD-* is $1300(\mathrm{~kg})$, it does not pose a problem. Based on these, FWM-3035TBD-* is selected.

4. Rotating Motion due to Air Cylinder Thrust

\square Number of soft absorber receivers $\mathrm{N}: 1$ unit

1. Calculating kinetic energy

$$
\begin{aligned}
E_{1} & =\frac{1}{2} I \omega^{2}=\frac{1}{2} \times M \times \frac{r_{2}^{2}}{2} \times\left(\frac{v}{r_{1}}\right)^{2} \\
& =\frac{1}{2} \times 200 \times \frac{0.5^{2}}{2} \times\left(\frac{0.5}{0.1}\right)^{2}=312.5(\mathrm{~J})
\end{aligned}
$$

(Impact rate $V=v \times\left(\frac{R}{r_{1}}\right)=0.5 \times\left(\frac{0.6}{0.1}\right)=3(\mathrm{~m} / \mathrm{s})$

2. Calculating thrusting energy

$$
\begin{aligned}
\mathrm{E}_{2} & =\mathrm{T} \Theta=\mathrm{F} \times r \times \frac{\mathrm{St}}{\mathrm{R}} \\
& =\frac{3.14 \times 0.08^{2} \times 0.5}{4} \times 10^{6} \times 0.1 \times \frac{\mathrm{St}}{0.6}
\end{aligned}
$$

At this point, the soft absorber's stroke must be determined tentatively. FA-4250YD-C with a maximum absorption capacity of $441(\mathrm{~J})$ is tentatively selected from the catalogue.
Thrusting energy is determined as follows.

$$
\mathrm{E}_{2}=\frac{3.14 \times 0.08^{2} \times 0.5}{4} \times 10^{6} \times 0.1 \times \frac{0.05}{0.6}=20.9(\mathrm{~J})
$$

3. Determine the total energy.

$$
E=E_{1}+E_{2}=312.5+20.9=333.4(\mathrm{~J})
$$

4. Feasibility check

4-1. Using absorption energy to check
As the absorption energy of FA-4250YD-C is 441(J), it does not pose a problem.
4-2. Using equivalent mass to check

$$
\mathrm{Me}=\frac{2 \mathrm{E}}{\mathrm{~V}^{2}}=\frac{2 \times 333.4}{3^{2}}=37(\mathrm{~kg})
$$

As the equivalent mass of FA-4250YD-C is $390(\mathrm{~kg})$, it does not pose a problem. Based on these, FA-4250YD-C is selected.

