

Equations for the Selection of Soft Absorbers (1)

	Inertial impact (horizontal)	Cylindrical thrust (horizontal)	Motor-driven dolly (horizontal)	Friction-driven dolly (horizontal)	
D : Internal diam		P: Pressure used D: Internal diameter of the cylinder M St St	M St Motor's horsepower	Kw : Motor's horsepower N1 : Total number of wheels N2 : Number of driving wheels	
Mass of the colliding object (kg)	M	M	M	M	
Impact rate (m/s)	V	V	V	V	
Kinetic energy (J)	E ₁ 1/2 M V ²	$E_1 = \frac{1}{2} M V^2$	E ₁ 1/2 M V ²	E ₁ 1/2 M V ²	
Thrust (N)		$F = \frac{D^2}{4} P 10^6$	F= kw 2.5 10 ³ V	F=0.25 M g N1/N2 F= \frac{kw 2.5 10^3}{V}	
Thrusting energy (J)		E ₂ F St	E ₂ F St	E ₂ F St	
Total energy (J)	$E = \frac{E_1}{N}$ (N: Number of soft absorber receivers)	$ E = \frac{E_1 - E_2}{N} $ (N: Number of soft absorber receivers)	E E ₁ E ₂ N (N: Number of soft absorber receivers)	E E ₁ E ₂ N (N: Number of soft absorber receivers)	
Equivalent mass (kg)	Me M/N	Me 2 E V 2	Me 2 E V 2	Me 2 E V2	
	Free-fall (vertical)	Cylindrical thrust (up and down)	Free-fall (slope)	Cylindrical thrust (slope; up and down)	
				V VEI	
Impact (examples)	M H St	V M D : Internal diameter S s s of the cylinder P : Pressure used M V	SI, L M	D: Internal diameter of the cylinder P: Pressure used	
Impact (examples) Mass of the colliding object (kg)	H St	V of the cylinder P : Pressure used	N M	of the cylinder	
	H St	V M of the cylinder P: Pressure used M V	ν α Μ V √19.6L sin	of the cylinder P: Pressure used	
Mass of the colliding object (kg)	H St	V M of the cylinder P: Pressure used M V		of the cylinder P: Pressure used M	
Mass of the colliding object (kg) Impact rate (m/s)	H H St St V √19.6H	V M of the cylinder P: Pressure used M V	V √19.6L sin	of the cylinder P: Pressure used M M V	
Mass of the colliding object (kg) Impact rate (m/s) Kinetic energy (J)	H H St St St St St St	of the cylinder P: Pressure used M V $M V V V V V V V V V V V V V V V V V V V$	V √19.6L sin	of the cylinder P: Pressure used M V E ₁	
Mass of the colliding object (kg) Impact rate (m/s) Kinetic energy (J) Thrust (N)	H H St St St St St St	M V E1 1/2 M V² F=F1 M g (Descending) F=F1 M g (Ascending) (F1: Cylindrical thrust)	V √19.6L sin E₁ M g L sin F=M g sin	of the cylinder P: Pressure used M V E ₁	

Equations for the Selection of Soft Absorbers (2)

	Free-fall (rotating)	Cylindrical thrust (rotating)	Cylindrical thrust (horizontally rotating)
Impact (examples)	α R R R	D: Internal diameter of the cylinder P: Pressure used	D: Internal diameter of the cylinder P: Pressure used
Mass of the colliding object (kg)			
Impact rate (m/s)	√ <u></u>		
Kinetic energy (J)		_	_
Thrust (N)			
Thrusting energy (J)			
Total energy (J)	(N: Number of soft absorber receivers)	(N: Number of soft absorber receivers)	(N: Number of soft absorber receivers)
Equivalent mass (kg)			—

Explanation of the symbols

Symbol	Unit	Explanation	Symbol	Unit	Explanation
Е	J	Total energy (per soft absorber)		rad	Sloping angle
Εı	J	Kinetic energy		rad	Vibrational angle within the soft absorber stroke
E ₂	J	Thrusting energy	R	m	Distance between the centre of rotation and absorber
Р	MPa	Pressure used by the driving cylinder	r ₁	m	Pitch circle radius of pinion gear
D	m	Internal diameter of the driving cylinder	r ₂	m	Radius of turntable
М	kg	Mass of the colliding object	h	m	Distance between the centre of rotation and centre of gravity
V	m/s	Impact rate	Т	N⋅m	Driving torque
F	N	Thrust		rad/s	Angular velocity
F₁	N	Air cylinder's thrust	I	kg⋅m²	Moment of inertia around the rotating shaft
St	m	Soft absorber stroke	N	Units	Number of soft absorber receivers
Н	m	The distance an object falls until it hits the soft absorber	kw	kw	Motor capacity
L	m	Travelling distance on slope	N ₁		Total number of wheels
g	m/s²	Acceleration due to gravity: 9.8m/s ²	N ₂		Number of driving wheels
G		Centre of gravity			

^{*1} Includes empty weight and external force of a cylinder, etc.

^{*2} Includes torque due to empty weight and torque due to motor, etc.

^{*3} Use whichever value is smaller.